
 

Abstract 
 
The ability to record and account for the usage of 
computational resources in a standardised way across 
different systems from multiple administrative domains 
is a precursor to widespread Grid deployment and 
availability. We describe the implementation of a 
Resource Usage Service (RUS), which is based on two 
emerging Global Grid Forum (GGF) standards, and 
uses Web Services technology. We address the issue of 
security, which is essential since usage information is 
potentially sensitive and must be verifiably accurate. 
We show that useful robust functionality can be 
provided using current Web Services standards and we 
thus avoid over-dependency on evolving Grid 
frameworks and middleware. This work has been 
undertaken within the UK e-Science project Markets for 
Computational Services, and builds on scenarios 
contributed to the project by organisations that manage 
and sell computing resource as a business. 
 

1.  Introduction 
 

The most popular current approach in Grid 
Computing is to build grids using Service Oriented 
Architectures, typically based on existing and emerging 
Web Services standards.  So a Grid can be seen as a 
collection of interacting services some of which 
virtualize the underlying resources, which can then be 
thought of as commodities.  These include, but are not 
limited to, compute cycles, data storage, database 
access, information streams from sensors, and the use 
of experimental apparatus.  In the future, it is likely that 
these resources will be traded, as well as consumed. 

The need for a standardised way of recording usage, 
which will enable the above, has been recognised by the 
Grid community [1]. However, this is an area that has 
not received the attention it warrants, despite some 
initial efforts [2][3][4]. Resources on the Grid tend to 
be allocated and charged for through traditional (non-
Grid) mechanisms, with the use of resources only being 
permitted through the prior negotiation of access, again 

through traditional mechanisms. For example, although 
it is possible to access resources on the Grid through 
Grid middleware, such as the Globus Toolkit [5] or 
UNICORE [6] you must first apply for an account on 
the underlying machines through non-Grid 
mechanisms. Similarly, usage can only be accounted 
for at the local system level rather than Grid-wide, as 
the mechanisms available tend to be designed for large 
multi-user computers or clusters operating within a 
single administrative domain, where the logging of 
usage is under the control of the resource management 
system that controls the resources, such as Load 
Sharing Facility (LSF) [7] or Portable Batch System 
(PBS) [8]. Indeed, on large specialist supercomputers 
proprietary mechanisms for accounting came as part of 
the management software. Grid computing is generally 
accepted to work across multiple-domains and strives to 
provide abstractions that hide the differences between 
management systems.  

In order for Grid computing to realise its goal where 
users (or software operating on a users behalf) can 
dynamically discover and negotiate the use of 
previously unknown resources across multiple 
administrative domains, abstractions that permit the 
trading or exchange of resources between the different 
providers need to be established. The Market for 
Computational Services (MCS) project [11], funded as 
part of the UK e-Science programme, aims to help 
bring this goal nearer, by using the model of a utilities 
market to provide some of the core components that are 
required for such an infrastructure. Only when Grid 
computing can provide standards-compliant services for 
accounting, measuring, and charging for resource 
usage, can the use of resources on the Grid become 
decoupled from traditional accounting and charging 
solutions. 

We also believe that enabling resources to be re-sold 
is vital to the commercial development of the Grid.  By 
introducing resellers into the Grid, you allow third-
party companies—who might not own any Grid-
enabled resources—to contribute other areas of 
expertise, while allowing them to make a profit.  One of 
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the use cases produced by the MCS project discussed a 
Computational Chemistry reseller, who targeted 
computational chemists, providing—for a monthly 
fee—some supercomputer CPU hours with a number of 
“free” runs of the Gaussian04 software; subsequent 
usage would be charged at a set tariff [12].  In short, we 
have to enable new business models if commercial 
participation in the Grid is to take off.  Only then can 
we realise the goal of grid computing as a utility, like 
electricity, water or gas. 

2.  The Market for Computational Services 
Project 

 
The Markets for Computational Services (MCS) 

Project started in May 2003, and initial plans for the 
project were based upon the emerging Open Grid 
Services Infrastructure (OGSI) [13]. The aim was to 
produce a basic infrastructure during the first year of 
the project, covering the recording of resource usage 
and interfaces to charging mechanisms; and to build 
upon this in the second year, developing methods for 
aggregating and auctioning resources, while also 
refining the infrastructure.  Descriptions of this planned 
work can be found in [9][10]. 

The abandonment of OGSI by those proposing it 
caused the goals of the MCS Project to be adjusted.  
Much of the second year of the project had to focus on 
refactoring the infrastructure to fit around Web 
Services.  This task was complicated by the fact that the 
proposed architecture relied heavily upon those features 
of OGSI that deviated from standard Web Services. 

As part of the second year work of the MCS Project, 
a prototype solution was developed for the user-guided 
discovery of computational resources suitable for the 
execution of a specified computational job.  In addition 
to the Resource Usage Service, described in this paper, 
this end-to-end solution included a Resource Broker 
and a Quotation Service, as shown in the architecture 
diagram in Figure 1. From this prototype solution, only 
the Resource Usage Service has been developed to a 
standard suitable for deployment in production services, 
whilst the other components remain as open areas of 
research. This reflects the current priorities of those 
deploying Grids. An overview of this work has yet to 
be published.  

Other publications and documentation relating to the 
MCS project can be found on the project website [11]. 

3. Architecture 
 

The GGF Resource Usage Service working group 
has produced a specification, which defines a Resource 
Usage Service (RUS) [15], whose purpose is to store 
accounting information. As this is only a draft, it is 
incomplete; some areas are underspecified, ambiguous 
and open to interpretation. The RUS specification itself 
depends upon the Usage Record format specification 
[14], which is another draft GGF standard, albeit one 
which is nearer completion. This standard provides a 
common way of representing usage information for 
batch and interactive compute jobs in XML, which is 
independent of the system it was generated from. This 
enables the recording of usage in a homogeneous way 
from a set of heterogeneous resources. The Usage 
Record format has also been used in the accounting 
system developed as part of GridBank [4], but this does 
not use the RUS specification. 

The most recent version of the RUS specification is 
based on the Open Grid Services Infrastructure or 
OGSI, which is now obsolete. Consequently, we chose 
to implement a plain web service version of the 
Resource Usage Service and so the parts of the GGF 
specification relating to OGSI, e.g. the use of Service 
Data Elements, were re-interpreted within our 
implementation paradigm. We encountered no 
difficulties with this re-interpretation. The RUS is a 
persistent single instance service, whose job is to 
provide persistent storage of usage data. All the 
operations the RUS exposes to clients are atomic, there 
is no dependency between them; consequently 
interactions with the RUS are stateless. 

Figure 1. End-to-End Economic Architecture 
Implemented in the MCS Project 

The three fundamental requirements, which drive the 
architecture of the Resource Usage Service, are as 
follows. Firstly, it must provide persistent storage and 



 

retrieval of XML Usage Records, conforming to the 
format defined by the GGF Usage Record Working 
Group [14]. Secondly, it must implement the WSDL 
port-types defined in the GGF Resource Usage Service 
Specification [15]. The final requirement is that read 
and write access to the data stored must be restricted to 
ensure privacy and prevent fraud. 

As the RUS is a system on which financial 
transactions ultimately depend, security is of the utmost 
importance. Ensuring the privacy of data requires read 
access to be restricted on a per record basis. For 
example, a resource consumer should be able to retrieve 
their usage information, but no one else’s. It also 
requires that the messages between the RUS client and 
the RUS are encrypted. Preventing fraud requires a 
combination of measures to be taken. Firstly, write 
access must be restricted to those entities that own the 
metered resources. This means that service consumers 
trust service providers to record the usage correctly. 
This is the usual trust model employed when 
consumption is metered. The data stored in the RUS 
must also be non-repudiatable. This can be achieved by 
ensuring message integrity between RUS client and 
RUS, and by maintaining an audit trail of each write 
operation on the RUS, where the identity of the entity 
performing the write operation and the date and time of 
the operation is recorded.  

Underpinning all of this is the ability to authenticate 
users and authorize their individual operations. In 
accordance with the RUS specification we have 
implemented role-based access control, with two 
categories of users, namely administrators and resource 
managers. The administrators have full read and write 
access to the RUS. The resource managers have their 
read and write permission restricted to only the records 
that relate to the resources for which they have 
managerial responsibilities.  

4. Implementation 
 

Our implementation consists of a web service that 
implements the RUS interface, and performs access 
control, and an underlying database which provides the 
storage and retrieval functionality, as is shown in 
Figure 2. This is a natural and obvious implementation 
for the Resource Usage Service.  

The Markets implementation of the RUS is in plain 
web services, and has been deployed in the Sun 
Application Server container, which is part of J2EE. It 
does not depend on any Grid middleware, but does need 
WS-Security to be supported in the web service 

container, which we had to implement in J2EE. 

Figure 2. Resource Usage Service Architecture 
We have chosen the Apache Xindice [16] XML 

database as our underlying database, which implements 
the XML:DB API [17]. An XML database was used as 
opposed to a conventional relational database, because 
we are storing usage records that are XML documents, 
and so we can store them directly in XML format 
without the need to map to a different database schema. 
The XML:DB API supports queries using XPath [18] 
and record modification using XUpdate [19]. These are 
both native XML technologies and eliminate the 
translation required with non-XML databases. The 
Xindice XML database is itself implemented as a web 
service and is hosted in the same container instance as 
the RUS web service application. 

The Resource Usage Service Specification states that 
Usage Records should be stored in a single XML 
document whose root element is of the type 
rus:RUSUsageRecords, which contains multiple 
rus:RUSUsageRecord elements. This has not been 
implemented as described for the following reason. The 
Xindice database is optimized for storing large numbers 
of small to medium sized XML documents. It does not 
handle single large documents well, and indeed, its 
maximum document size is constrained to 5 MB. 
Therefore we have stored each rus:RUSUsageRecord 
as a separate document. This is viable with the Xindice 
database, as it allows XPath queries to span all 
documents in a collection. 

The GGF RUS working group has not yet produced a 
WSDL description of the service interface, and so we 
have defined one based upon the Service Interface 
Definition given in the RUS specification. We have 
used the document-literal encoding for the SOAP 
messages. There are three fault types defined, namely 
RUSInputFault, RUSProcessingFault and 
RUSUserNotAuthorisedFault. The first is used 
when an operation is invoked with invalid input, for 
example a usage record that does not conform to the 
schema.  The second is returned if the RUS encounters 
an internal error. The third is used when a user has no 



 

authorisation to access any of the operations of the RUS 
instance. For each operation we have tried to use the 
types defined in existing schemas where possible. For 
responses, we have defined our own types for 
OperationalResult and RUSIdList in accordance 
with the RUS specification. We have used JAX-RPC 
(1.1.1) [20] for compiling our WSDL to Java, with the 
databinding option switched on. However due to the 
complexity of the urwg:UsageRecord format, 
translation completely to Java classes is not possible, 
and so those operations which pass 
urwg:UsageRecords  pass them as a SOAPElement. 
The RUS then parses the SOAPElement and verifies it 
against the schema to ensure that the usage record is 
valid. 

The URWG schema specifies only two mandatory 
elements in a usage record, namely 
urwg:RecordIdentity and urwg:Status. Our 
implementation requires that usage records must also 
contain the elements urwg:MachineName, 
urwg:SubmitHost, urwg:GlobalJobId and 
ds:X509SubjectName from urwg:UserIdentity. If 
these elements are not present then the record is 
rejected. The rationale for this is that without these four 
fields, there would be no way to trace which user or 
resource the record relates to. In future the elements 
that are mandatory in this way will be a configurable 
option. 

The RUS specification defines operations for 
inserting, modifying, replacing and deleting records. As 
the RUS is recording usage information that is 
ultimately used to determine how much a consumer 
owes a resource provider, it is requirement that an audit 
trail exists for every record in the database, as it is can 
be effective in resolving disputes.  An audit trail records 
every modification to a Usage Record. The RUS 
specification provides for the beginning of the audit 
trail, by mandating in the rus:RUSUsageRecord 
format that when a record is inserted into the RUS, the 
distinguished name of the entity which is storing the 
record and a timestamp. We have extended this such 
that when a record is modified, we also record the 
identity of the modifier and the time of the 
modification, as part of the rus:RUSUsageRecord. 
When a record is deleted, only the 
urwg:UsageRecord element of the 
rus:RUSUsageRecord is removed, and again we 
record, as part of the rus:RUSUsageRecord, the 
details of who deleted the record and when they did it. 

Our implementation of the RUS uses an access 
control list, which is an XML document stored in a 

configuration file, to define the roles of users and their 
permissions. We have defined an XML schema for the 
format of this access control list. Each entry in this file 
defines either an administrator or a resource manager, 
and associates it with the distinguished name from an 
X.509 [21] digital certificate. If a resource manager is 
defined, then the permitted resources are also listed. In 
our implementation we have used 
urwg:ProjectName, urwg:MachineName, 
urwg:SubmitHost as the three types of resources, 
although this could be made a configurable option. A 
resource manager may have zero or more entries for 
each resource type. For an individual usage record, the 
resource manager is authorized to read or write it if for 
each one of the non-empty resource types defined in the 
access control list there exists a entry whose value is 
equal to the value of the corresponding element in the 
usage record. 

We used WS-Security [22] using X.509 digital 
certificates both for guaranteeing message integrity and 
for authentication of the entity invoking a RUS 
operation. This has been implemented into the JAX-
RPC handler mechanism. When the web-services 
container invokes the application code for an operation, 
the application code can retrieve the verified X.509 
distinguished name of the client entity and also be sure 
that the message has not be tampered with.  The next 
step is to authorise the client entity. For all operations, 
the client entity is categorised as either an administrator 
or a resource manager. If the client entity has no entry 
for its distinguished name in the access control list then 
a RUSUserNotAuthorisedFault message is 
returned. If the client is determined to be an 
administrator then no further authorisation is required. 
For resource managers, per record authorisation is 
required and this is implemented in one of two ways 
depending on whether the operation is based on a query 
or not. For query based operations, such as 
RUS::deleteRecords, the XPath query is extended 
with extra predicates derived from the permitted 
resources list. This ensures that the query only returns 
records for which the resource manager is authorised. 
For non-query operations, such as 
RUS::insertUsageRecords, the resource manager 
must be authorised for each record in turn. This is 
implemented in the RUS by first determining the set of 
records affected by the operation, and then determining 
whether the resource manager is authorised by checking 
the values of the elements in the usage record against 
the permitted resources defined in the entry in the 
access control list. If a resource manager is not 



 

permitted to perform an operation on a specific record, 
for example using the RUS::deleteSpecific 
operation, then rus:permissionDenied is returned 
in the rus:operationalResult element. 

Only those defined as administrators and resource 
managers are allowed to access the RUS. However, 
allowing individual users to check their personal 
resource usage is desirable feature. We have devised an 
architecture that permits this and does not require the 
configuration of individual users in the access control 
list of the RUS. This system is shown in Figure 3. 

Users are able to access the query system through a 
web browser, using the SSL protocol for client 
authentication. A query form is presented to the user, 
which allows them to select a pre-defined query or 
enter their own XPath query. The form is sent to the 
Java Servlet and it appends an extra predicate to the 
XPath query, which ensures that only the records 
corresponding to the authenticated user’s usage can be 
returned. The Servlet sends the query to the RUS web 
service, and returns the results to the users as a HTML 
page. The RUS Query Servlet must have permission to 
access the RUS as either an administrator or a resource 
manager. The alternative to this mutli-tiered approach 
would be to append the extra predicate at the RUS itself 
when a query operation is invoked and the requesting 
entity is not know to the RUS through the access 
control list. This approach has several disadvantages - 
the user must have a bespoke application capable of 
querying the RUS; intermediate processing of the query 
and responses is not possible; a denial of service attack 
exists as anyone can make the RUS execute a query. 
We have successfully used this approach to provide a 
web-based administration interface, which exposes all 
operations of the RUS.  

Figure 3. Multi-Tiered RUS Query Architecture 

5. Performance Characterisation 
 

The RUS is expected to be deployed on high job 
throughput clusters and grids. This requires that the 
RUS must have high storage capacity, low processing 
overhead for read and write operations, and is able to 
handle with a large number of transactions per second. 
The performance characterisation and subsequent 
tuning is necessary before deployment.  

The performance of the RUS is dependent in the 
main on the underlying database used, which in our 
case is Xindice. The RUS web service and the container 
that it executes within incur a constant processing 
overhead that is independent of the size of the database. 
For example with an insert operation, the RUS web 
service checks that a Usage Record is valid and that the 
user has authorisation to insert this record. Then it 
queries the database to see if the record already exists, 
and if it does not then it inserts it. The time taken for 
the query is dependent on the size of the database, 
whilst the actual insert operation is not. 

In our performance tests we have used a dual CPU 
Intel 3.06GHz box with 4Gb RAM with Red Hat 
Enterprise 3.0 and the Sun Application Server 8.0 
Update 1 as the container. Xindice permits the user to 
choose the elements that will be indexed. In our tests 
we restricted this to the four elements that are used to 
determine if a record already exists when inserting, 
namely urwg:MachineName, urwg:SubmitHost, 
urwg:GlobalJobId and ds:X509SubjectName from 
urwg:UserIdentity. This ensures that the insert 
operation is as fast as possible. If a query is made 
across an element that is not indexed then Xindice must 
perform a sequential search through all the elements. 
This has implications for the RUS Query Service and 
deployment of the RUS, if arbitrary queries are to be 
permitted, then Xindice must index every element of 
the Usage Record, otherwise queries must be restricted 
to the elements that are indexed.  

In our testing we have used the Usage Records 
produced by the CSAR HPC service. Since there are 
not enough unique records available to populate the 
database to the levels we require, then our spooler that 
inserts the records, replaces the urwg:UserIdentity 
with a random string value and increments the 
urwg:GlobalJobId.  

We have populated a database with 1.5 million 
records. The sizes of the underlying database files on 
disk are shown in Table 1. 

Number of Records 1.5 million 
Average Record Size 1.2 Kb 
Size of database file 9.3 Gb 
Average size of each 
index file 

1.9 Gb 

Average insertion time 
for a record 

0.3 s 

Table 1 Statistics for a heavily populated 
database 

We have tested the RUS with multiple clients 



 

operating simultaneously. We have used ten inserters, 
with two deletion clients and two query clients. The 
deletion client request the deletion of ten records 
chosen at random, whilst the query client requests the 
retrieval of ten records chosen at random. When 
multiple inserters only are run, we have seen a small 
(<0.01s) increase in the average insertion time on our 
1.5 million record database, which reflects then extra 
processing overhead for the container handling multiple 
requests. Using the deletion and query clients 
simultaneously with the inserters predictably increases 
the insertion time. 

6. Lessons Learned 
 

The specification mandates that usage records be 
stored as a single XML document, but we chose to store 
them as separate documents for performance reasons. 
This raises the question of how much a specification 
should dictate an implementation. In this case, does it 
matter how the information is stored in the RUS, 
providing it conforms to the service interface? A case 
can be made for defining a single document format that 
is to be used when exporting the contents of the 
database, presumably so that it can be imported into 
another RUS implementation, but this would still not 
mandate the internal representation of data. This is a 
recurring issue with the RUS specification. Another 
example is the definition of the role-based based 
security in the specification. Standardising this does 
nothing to foster interoperable implementations, which 
is the purpose of a standard. Indeed, this is an area 
where implementations can differentiate themselves 
from one another, which is vitally important if we are 
ever want to be able to chose between commercial 
implementations. Whilst we acknowledge that it is only 
a draft standard, we would argue strongly that it should 
be restricted to the defining the service interface and the 
format of the rus:UsageRecord. 

7. Conclusions and Future Work 
 

In our implementation WS-Security has been used to 
provide authentication and message integrity. An 
alternative approach would be to use Transport Layer 
Security [23]. The advantage of TLS is that it is widely 
available, and it is mature.  In addition, available TLS 
implementations would appear to be much faster than 
using Java-based WS-Security.  TLS would also 
provide a means to encrypt the messages sent between a 
client and the RUS, which is not yet available in our 

WS-Security implementation. 
We expect large volumes of usage data to be 

produced by future Grid services, and this data must be 
stored for an indefinite period. This will require the 
RUS to provide an archiving capability, where records 
over a certain age can be moved out of the RUS into 
archive storage. We currently use Xindice’s backup 
functionality to keep copies of the data, but there is no 
mechanism for pruning old records from the database. 

We are working towards deploying the RUS on the 
CSAR HPC facility at the University of Manchester 
[24]. The XML usage records are produced by the local 
batch scheduler on job completion and are stored in a 
spool directory on the local file system. Periodically, 
the Resource Usage Spooler, which is effectively a 
RUS client, collates all the usage records in the 
directory, which are then sent to the RUS by invoking 
the RUS::insertUsageRecords operation. The 
records are then deleted from the local file system. We 
are also working to deploy the RUS on the UK National 
Grid Service [25].  

We have not considered how the Resource Usage 
Service might be employed in the envisaged Market for 
Computational Services.  For example, when charging 
for the use of a resource, the RUS would be queried 
before a banking service was contacted to decrement a 
users account according to their usage.  Alternatively, a 
billing service might aggregate a client’s usage over a 
period of time, e.g. a calendar month, and present this 
to the client for payment.  Indeed, there are many 
higher-level models that can be conceived, from the 
current situation up to the trading of Grid resources by 
brokers as in the electricity spot market.  However, in 
all these scenarios, there is a need to access usage 
information in a uniform manner. We believe that the 
provision of this fundamental Grid component as a web 
service is an appropriate way forward. 

 
This work was funded as part of the DTI/EPSRC e-
Science Core Technology Programme through the 
Market for Computational Services project. 
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