

Abstract

The ability to record and account for the usage of
computational resources in a standardised way across
different systems from multiple administrative domains
is a precursor to widespread Grid deployment and
availability. We describe the implementation of a
Resource Usage Service (RUS), which is based on two
emerging Global Grid Forum (GGF) standards, and
uses Web Services technology. We address the issue of
security, which is essential since usage information is
potentially sensitive and must be verifiably accurate.
We show that useful robust functionality can be
provided using current Web Services standards and we
thus avoid over-dependency on evolving Grid
frameworks and middleware. This work has been
undertaken within the UK e-Science project Markets for
Computational Services, and builds on scenarios
contributed to the project by organisations that manage
and sell computing resource as a business.

1. Introduction

The most popular current approach in Grid
Computing is to build grids using Service Oriented
Architectures, typically based on existing and emerging
Web Services standards. So a Grid can be seen as a
collection of interacting services some of which
virtualize the underlying resources, which can then be
thought of as commodities. These include, but are not
limited to, compute cycles, data storage, database
access, information streams from sensors, and the use
of experimental apparatus. In the future, it is likely that
these resources will be traded, as well as consumed.

The need for a standardised way of recording usage,
which will enable the above, has been recognised by the
Grid community [1]. However, this is an area that has
not received the attention it warrants, despite some
initial efforts [2][3][4]. Resources on the Grid tend to
be allocated and charged for through traditional (non-
Grid) mechanisms, with the use of resources only being
permitted through the prior negotiation of access, again

through traditional mechanisms. For example, although
it is possible to access resources on the Grid through
Grid middleware, such as the Globus Toolkit [5] or
UNICORE [6] you must first apply for an account on
the underlying machines through non-Grid
mechanisms. Similarly, usage can only be accounted
for at the local system level rather than Grid-wide, as
the mechanisms available tend to be designed for large
multi-user computers or clusters operating within a
single administrative domain, where the logging of
usage is under the control of the resource management
system that controls the resources, such as Load
Sharing Facility (LSF) [7] or Portable Batch System
(PBS) [8]. Indeed, on large specialist supercomputers
proprietary mechanisms for accounting came as part of
the management software. Grid computing is generally
accepted to work across multiple-domains and strives to
provide abstractions that hide the differences between
management systems.

In order for Grid computing to realise its goal where
users (or software operating on a users behalf) can
dynamically discover and negotiate the use of
previously unknown resources across multiple
administrative domains, abstractions that permit the
trading or exchange of resources between the different
providers need to be established. The Market for
Computational Services (MCS) project [11], funded as
part of the UK e-Science programme, aims to help
bring this goal nearer, by using the model of a utilities
market to provide some of the core components that are
required for such an infrastructure. Only when Grid
computing can provide standards-compliant services for
accounting, measuring, and charging for resource
usage, can the use of resources on the Grid become
decoupled from traditional accounting and charging
solutions.

We also believe that enabling resources to be re-sold
is vital to the commercial development of the Grid. By
introducing resellers into the Grid, you allow third-
party companies—who might not own any Grid-
enabled resources—to contribute other areas of
expertise, while allowing them to make a profit. One of

Implementing a Secure, Service Oriented Accounting System for
Computational Economies

John D. Ainsworth, Jon MacLaren, John M. Brooke

Manchester Computing, The University of Manchester
{john.ainsworth, jon.maclaren, john.brooke }@manchester.ac.uk

the use cases produced by the MCS project discussed a
Computational Chemistry reseller, who targeted
computational chemists, providing—for a monthly
fee—some supercomputer CPU hours with a number of
“free” runs of the Gaussian04 software; subsequent
usage would be charged at a set tariff [12]. In short, we
have to enable new business models if commercial
participation in the Grid is to take off. Only then can
we realise the goal of grid computing as a utility, like
electricity, water or gas.

2. The Market for Computational Services
Project

The Markets for Computational Services (MCS)

Project started in May 2003, and initial plans for the
project were based upon the emerging Open Grid
Services Infrastructure (OGSI) [13]. The aim was to
produce a basic infrastructure during the first year of
the project, covering the recording of resource usage
and interfaces to charging mechanisms; and to build
upon this in the second year, developing methods for
aggregating and auctioning resources, while also
refining the infrastructure. Descriptions of this planned
work can be found in [9][10].

The abandonment of OGSI by those proposing it
caused the goals of the MCS Project to be adjusted.
Much of the second year of the project had to focus on
refactoring the infrastructure to fit around Web
Services. This task was complicated by the fact that the
proposed architecture relied heavily upon those features
of OGSI that deviated from standard Web Services.

As part of the second year work of the MCS Project,
a prototype solution was developed for the user-guided
discovery of computational resources suitable for the
execution of a specified computational job. In addition
to the Resource Usage Service, described in this paper,
this end-to-end solution included a Resource Broker
and a Quotation Service, as shown in the architecture
diagram in Figure 1. From this prototype solution, only
the Resource Usage Service has been developed to a
standard suitable for deployment in production services,
whilst the other components remain as open areas of
research. This reflects the current priorities of those
deploying Grids. An overview of this work has yet to
be published.

Other publications and documentation relating to the
MCS project can be found on the project website [11].

3. Architecture

The GGF Resource Usage Service working group
has produced a specification, which defines a Resource
Usage Service (RUS) [15], whose purpose is to store
accounting information. As this is only a draft, it is
incomplete; some areas are underspecified, ambiguous
and open to interpretation. The RUS specification itself
depends upon the Usage Record format specification
[14], which is another draft GGF standard, albeit one
which is nearer completion. This standard provides a
common way of representing usage information for
batch and interactive compute jobs in XML, which is
independent of the system it was generated from. This
enables the recording of usage in a homogeneous way
from a set of heterogeneous resources. The Usage
Record format has also been used in the accounting
system developed as part of GridBank [4], but this does
not use the RUS specification.

The most recent version of the RUS specification is
based on the Open Grid Services Infrastructure or
OGSI, which is now obsolete. Consequently, we chose
to implement a plain web service version of the
Resource Usage Service and so the parts of the GGF
specification relating to OGSI, e.g. the use of Service
Data Elements, were re-interpreted within our
implementation paradigm. We encountered no
difficulties with this re-interpretation. The RUS is a
persistent single instance service, whose job is to
provide persistent storage of usage data. All the
operations the RUS exposes to clients are atomic, there
is no dependency between them; consequently
interactions with the RUS are stateless.

Figure 1. End-to-End Economic Architecture
Implemented in the MCS Project

The three fundamental requirements, which drive the
architecture of the Resource Usage Service, are as
follows. Firstly, it must provide persistent storage and

retrieval of XML Usage Records, conforming to the
format defined by the GGF Usage Record Working
Group [14]. Secondly, it must implement the WSDL
port-types defined in the GGF Resource Usage Service
Specification [15]. The final requirement is that read
and write access to the data stored must be restricted to
ensure privacy and prevent fraud.

As the RUS is a system on which financial
transactions ultimately depend, security is of the utmost
importance. Ensuring the privacy of data requires read
access to be restricted on a per record basis. For
example, a resource consumer should be able to retrieve
their usage information, but no one else’s. It also
requires that the messages between the RUS client and
the RUS are encrypted. Preventing fraud requires a
combination of measures to be taken. Firstly, write
access must be restricted to those entities that own the
metered resources. This means that service consumers
trust service providers to record the usage correctly.
This is the usual trust model employed when
consumption is metered. The data stored in the RUS
must also be non-repudiatable. This can be achieved by
ensuring message integrity between RUS client and
RUS, and by maintaining an audit trail of each write
operation on the RUS, where the identity of the entity
performing the write operation and the date and time of
the operation is recorded.

Underpinning all of this is the ability to authenticate
users and authorize their individual operations. In
accordance with the RUS specification we have
implemented role-based access control, with two
categories of users, namely administrators and resource
managers. The administrators have full read and write
access to the RUS. The resource managers have their
read and write permission restricted to only the records
that relate to the resources for which they have
managerial responsibilities.

4. Implementation

Our implementation consists of a web service that
implements the RUS interface, and performs access
control, and an underlying database which provides the
storage and retrieval functionality, as is shown in
Figure 2. This is a natural and obvious implementation
for the Resource Usage Service.

The Markets implementation of the RUS is in plain
web services, and has been deployed in the Sun
Application Server container, which is part of J2EE. It
does not depend on any Grid middleware, but does need
WS-Security to be supported in the web service

container, which we had to implement in J2EE.

Figure 2. Resource Usage Service Architecture
We have chosen the Apache Xindice [16] XML

database as our underlying database, which implements
the XML:DB API [17]. An XML database was used as
opposed to a conventional relational database, because
we are storing usage records that are XML documents,
and so we can store them directly in XML format
without the need to map to a different database schema.
The XML:DB API supports queries using XPath [18]
and record modification using XUpdate [19]. These are
both native XML technologies and eliminate the
translation required with non-XML databases. The
Xindice XML database is itself implemented as a web
service and is hosted in the same container instance as
the RUS web service application.

The Resource Usage Service Specification states that
Usage Records should be stored in a single XML
document whose root element is of the type
rus:RUSUsageRecords, which contains multiple
rus:RUSUsageRecord elements. This has not been
implemented as described for the following reason. The
Xindice database is optimized for storing large numbers
of small to medium sized XML documents. It does not
handle single large documents well, and indeed, its
maximum document size is constrained to 5 MB.
Therefore we have stored each rus:RUSUsageRecord
as a separate document. This is viable with the Xindice
database, as it allows XPath queries to span all
documents in a collection.

The GGF RUS working group has not yet produced a
WSDL description of the service interface, and so we
have defined one based upon the Service Interface
Definition given in the RUS specification. We have
used the document-literal encoding for the SOAP
messages. There are three fault types defined, namely
RUSInputFault, RUSProcessingFault and
RUSUserNotAuthorisedFault. The first is used
when an operation is invoked with invalid input, for
example a usage record that does not conform to the
schema. The second is returned if the RUS encounters
an internal error. The third is used when a user has no

authorisation to access any of the operations of the RUS
instance. For each operation we have tried to use the
types defined in existing schemas where possible. For
responses, we have defined our own types for
OperationalResult and RUSIdList in accordance
with the RUS specification. We have used JAX-RPC
(1.1.1) [20] for compiling our WSDL to Java, with the
databinding option switched on. However due to the
complexity of the urwg:UsageRecord format,
translation completely to Java classes is not possible,
and so those operations which pass
urwg:UsageRecords pass them as a SOAPElement.
The RUS then parses the SOAPElement and verifies it
against the schema to ensure that the usage record is
valid.

The URWG schema specifies only two mandatory
elements in a usage record, namely
urwg:RecordIdentity and urwg:Status. Our
implementation requires that usage records must also
contain the elements urwg:MachineName,
urwg:SubmitHost, urwg:GlobalJobId and
ds:X509SubjectName from urwg:UserIdentity. If
these elements are not present then the record is
rejected. The rationale for this is that without these four
fields, there would be no way to trace which user or
resource the record relates to. In future the elements
that are mandatory in this way will be a configurable
option.

The RUS specification defines operations for
inserting, modifying, replacing and deleting records. As
the RUS is recording usage information that is
ultimately used to determine how much a consumer
owes a resource provider, it is requirement that an audit
trail exists for every record in the database, as it is can
be effective in resolving disputes. An audit trail records
every modification to a Usage Record. The RUS
specification provides for the beginning of the audit
trail, by mandating in the rus:RUSUsageRecord
format that when a record is inserted into the RUS, the
distinguished name of the entity which is storing the
record and a timestamp. We have extended this such
that when a record is modified, we also record the
identity of the modifier and the time of the
modification, as part of the rus:RUSUsageRecord.
When a record is deleted, only the
urwg:UsageRecord element of the
rus:RUSUsageRecord is removed, and again we
record, as part of the rus:RUSUsageRecord, the
details of who deleted the record and when they did it.

Our implementation of the RUS uses an access
control list, which is an XML document stored in a

configuration file, to define the roles of users and their
permissions. We have defined an XML schema for the
format of this access control list. Each entry in this file
defines either an administrator or a resource manager,
and associates it with the distinguished name from an
X.509 [21] digital certificate. If a resource manager is
defined, then the permitted resources are also listed. In
our implementation we have used
urwg:ProjectName, urwg:MachineName,
urwg:SubmitHost as the three types of resources,
although this could be made a configurable option. A
resource manager may have zero or more entries for
each resource type. For an individual usage record, the
resource manager is authorized to read or write it if for
each one of the non-empty resource types defined in the
access control list there exists a entry whose value is
equal to the value of the corresponding element in the
usage record.

We used WS-Security [22] using X.509 digital
certificates both for guaranteeing message integrity and
for authentication of the entity invoking a RUS
operation. This has been implemented into the JAX-
RPC handler mechanism. When the web-services
container invokes the application code for an operation,
the application code can retrieve the verified X.509
distinguished name of the client entity and also be sure
that the message has not be tampered with. The next
step is to authorise the client entity. For all operations,
the client entity is categorised as either an administrator
or a resource manager. If the client entity has no entry
for its distinguished name in the access control list then
a RUSUserNotAuthorisedFault message is
returned. If the client is determined to be an
administrator then no further authorisation is required.
For resource managers, per record authorisation is
required and this is implemented in one of two ways
depending on whether the operation is based on a query
or not. For query based operations, such as
RUS::deleteRecords, the XPath query is extended
with extra predicates derived from the permitted
resources list. This ensures that the query only returns
records for which the resource manager is authorised.
For non-query operations, such as
RUS::insertUsageRecords, the resource manager
must be authorised for each record in turn. This is
implemented in the RUS by first determining the set of
records affected by the operation, and then determining
whether the resource manager is authorised by checking
the values of the elements in the usage record against
the permitted resources defined in the entry in the
access control list. If a resource manager is not

permitted to perform an operation on a specific record,
for example using the RUS::deleteSpecific
operation, then rus:permissionDenied is returned
in the rus:operationalResult element.

Only those defined as administrators and resource
managers are allowed to access the RUS. However,
allowing individual users to check their personal
resource usage is desirable feature. We have devised an
architecture that permits this and does not require the
configuration of individual users in the access control
list of the RUS. This system is shown in Figure 3.

Users are able to access the query system through a
web browser, using the SSL protocol for client
authentication. A query form is presented to the user,
which allows them to select a pre-defined query or
enter their own XPath query. The form is sent to the
Java Servlet and it appends an extra predicate to the
XPath query, which ensures that only the records
corresponding to the authenticated user’s usage can be
returned. The Servlet sends the query to the RUS web
service, and returns the results to the users as a HTML
page. The RUS Query Servlet must have permission to
access the RUS as either an administrator or a resource
manager. The alternative to this mutli-tiered approach
would be to append the extra predicate at the RUS itself
when a query operation is invoked and the requesting
entity is not know to the RUS through the access
control list. This approach has several disadvantages -
the user must have a bespoke application capable of
querying the RUS; intermediate processing of the query
and responses is not possible; a denial of service attack
exists as anyone can make the RUS execute a query.
We have successfully used this approach to provide a
web-based administration interface, which exposes all
operations of the RUS.

Figure 3. Multi-Tiered RUS Query Architecture

5. Performance Characterisation

The RUS is expected to be deployed on high job
throughput clusters and grids. This requires that the
RUS must have high storage capacity, low processing
overhead for read and write operations, and is able to
handle with a large number of transactions per second.
The performance characterisation and subsequent
tuning is necessary before deployment.

The performance of the RUS is dependent in the
main on the underlying database used, which in our
case is Xindice. The RUS web service and the container
that it executes within incur a constant processing
overhead that is independent of the size of the database.
For example with an insert operation, the RUS web
service checks that a Usage Record is valid and that the
user has authorisation to insert this record. Then it
queries the database to see if the record already exists,
and if it does not then it inserts it. The time taken for
the query is dependent on the size of the database,
whilst the actual insert operation is not.

In our performance tests we have used a dual CPU
Intel 3.06GHz box with 4Gb RAM with Red Hat
Enterprise 3.0 and the Sun Application Server 8.0
Update 1 as the container. Xindice permits the user to
choose the elements that will be indexed. In our tests
we restricted this to the four elements that are used to
determine if a record already exists when inserting,
namely urwg:MachineName, urwg:SubmitHost,
urwg:GlobalJobId and ds:X509SubjectName from
urwg:UserIdentity. This ensures that the insert
operation is as fast as possible. If a query is made
across an element that is not indexed then Xindice must
perform a sequential search through all the elements.
This has implications for the RUS Query Service and
deployment of the RUS, if arbitrary queries are to be
permitted, then Xindice must index every element of
the Usage Record, otherwise queries must be restricted
to the elements that are indexed.

In our testing we have used the Usage Records
produced by the CSAR HPC service. Since there are
not enough unique records available to populate the
database to the levels we require, then our spooler that
inserts the records, replaces the urwg:UserIdentity
with a random string value and increments the
urwg:GlobalJobId.

We have populated a database with 1.5 million
records. The sizes of the underlying database files on
disk are shown in Table 1.

Number of Records 1.5 million
Average Record Size 1.2 Kb
Size of database file 9.3 Gb
Average size of each
index file

1.9 Gb

Average insertion time
for a record

0.3 s

Table 1 Statistics for a heavily populated
database

We have tested the RUS with multiple clients

operating simultaneously. We have used ten inserters,
with two deletion clients and two query clients. The
deletion client request the deletion of ten records
chosen at random, whilst the query client requests the
retrieval of ten records chosen at random. When
multiple inserters only are run, we have seen a small
(<0.01s) increase in the average insertion time on our
1.5 million record database, which reflects then extra
processing overhead for the container handling multiple
requests. Using the deletion and query clients
simultaneously with the inserters predictably increases
the insertion time.

6. Lessons Learned

The specification mandates that usage records be
stored as a single XML document, but we chose to store
them as separate documents for performance reasons.
This raises the question of how much a specification
should dictate an implementation. In this case, does it
matter how the information is stored in the RUS,
providing it conforms to the service interface? A case
can be made for defining a single document format that
is to be used when exporting the contents of the
database, presumably so that it can be imported into
another RUS implementation, but this would still not
mandate the internal representation of data. This is a
recurring issue with the RUS specification. Another
example is the definition of the role-based based
security in the specification. Standardising this does
nothing to foster interoperable implementations, which
is the purpose of a standard. Indeed, this is an area
where implementations can differentiate themselves
from one another, which is vitally important if we are
ever want to be able to chose between commercial
implementations. Whilst we acknowledge that it is only
a draft standard, we would argue strongly that it should
be restricted to the defining the service interface and the
format of the rus:UsageRecord.

7. Conclusions and Future Work

In our implementation WS-Security has been used to
provide authentication and message integrity. An
alternative approach would be to use Transport Layer
Security [23]. The advantage of TLS is that it is widely
available, and it is mature. In addition, available TLS
implementations would appear to be much faster than
using Java-based WS-Security. TLS would also
provide a means to encrypt the messages sent between a
client and the RUS, which is not yet available in our

WS-Security implementation.
We expect large volumes of usage data to be

produced by future Grid services, and this data must be
stored for an indefinite period. This will require the
RUS to provide an archiving capability, where records
over a certain age can be moved out of the RUS into
archive storage. We currently use Xindice’s backup
functionality to keep copies of the data, but there is no
mechanism for pruning old records from the database.

We are working towards deploying the RUS on the
CSAR HPC facility at the University of Manchester
[24]. The XML usage records are produced by the local
batch scheduler on job completion and are stored in a
spool directory on the local file system. Periodically,
the Resource Usage Spooler, which is effectively a
RUS client, collates all the usage records in the
directory, which are then sent to the RUS by invoking
the RUS::insertUsageRecords operation. The
records are then deleted from the local file system. We
are also working to deploy the RUS on the UK National
Grid Service [25].

We have not considered how the Resource Usage
Service might be employed in the envisaged Market for
Computational Services. For example, when charging
for the use of a resource, the RUS would be queried
before a banking service was contacted to decrement a
users account according to their usage. Alternatively, a
billing service might aggregate a client’s usage over a
period of time, e.g. a calendar month, and present this
to the client for payment. Indeed, there are many
higher-level models that can be conceived, from the
current situation up to the trading of Grid resources by
brokers as in the electricity spot market. However, in
all these scenarios, there is a need to access usage
information in a uniform manner. We believe that the
provision of this fundamental Grid component as a web
service is an appropriate way forward.

This work was funded as part of the DTI/EPSRC e-
Science Core Technology Programme through the
Market for Computational Services project.

References
[1] Global Grid Forum Grid User Service Research Group

“Grid Constitiution”, draft version available online at
http://forge.gridforum.org/projects/gus-
rg/document/Grid_Constitution/en/1

[2] M. Koo, “IPG Distributed Accounting System”, NASA
Ames Research Centre, 2001, available online at
http://www.nas.nasa.gov/Groups/Database/ipgacct.pdf

[3] A. Saleem, M. Krznaric, J. Cohen, S. Newhouse, and
J. Darlington, “Using the VOM portal to manage policy

within Globus Toolkit, Community Authorisation
Service & ICENI resources”, in UK e-Science All Hands
Meeting, p. 418--423, Nottingham, UK, Sep. 2004 ISBN
1-904425-21-6

[4] A. Barmouta and R. Buyya,, “GridBank: A Grid
Accounting Services Architecture (GASA) for
Distributed Systems Sharing and Integration”, in
Workshop on Internet Computing and E-Commerce,
Proceedings of the 17th Annual International Parallel
and Distributed Processing Symposium (IPDPS 2003),
IEEE Computer Society Press, USA, April 22-26, 2003,
Nice, France.

[5] Globus Project website. http://www.globus.org/.
[6] Unicore Project website. http://www.unicore.org/.
[7] Load Sharing Facility, Platform Computing Products.

http://www.platform.com/products/LSF/
[8] Portable Batch System. http://www.openpbs.org/
[9] S. Newhouse, J. Darlington, M. Asaria et al, “Trading

Grid Services Within the UK e-Science Grid”, in
Proceedings of the UK e-Science All Hands Meeting,
Nottingham, UK, Sep. 2003. ISBN 1-904425-11-9,
pp.13–20.

[10] S. Newhouse, J. MacLaren, K. Keahey, “Trading Grid
Services within the UK e-Science Grid”, in Grid
Resource Management: State of the Art and Future
Trends (Eds. J Nabrzyski et al), Kluwer Publishing, Sep.
2003, ISBN 1402075758 pp. 275 – 285.

[11] Markets for Computation Service Project website.
http://www.lesc.ic.ac.uk/markets/

[12] S Newhouse, J MacLaren, K Keahey, “GESA Usecases”,
Global Grid Forum Grid Economic Services Architecture
Working Group, available online at
http://www.lesc.ic.ac.uk/markets/draft-ggf-gesa-use-
cases-01-7

[13] S Tuecke, K Czajkowski, I Foster et al, “Open Grid
Services Infrastructure”, Global Grid Forum
Recommendation, GFD.15. Available online at
http://www.ggf.org/documents/GWD-R/GFD-R.015.pdf

[14] R. Mach et al, “Usage Record – XML Format”, Global
Grid Forum Usage Record Working Group draft version
12. Available online at
http://www.psc.edu/~lfm/Grid/UR-WG/URWG-
Schema.12.doc

[15] S. Newhouse and J. MacLaren, “Resource Usage Service
RUS” Global Grid Forum Resource Usage Service
Working Group draft-ggf-rus-service-4. Available online
at https://forge.gridforum.org/projects/rus-
wg/document/draft-ggf-rus-service-4-public/en/1

[16] Apache Xindice XML database.
http://xml.apache.org/xindice/

[17] “XML:DB API” draft specification September 2001,
available online at http://xmldb-
org.sourceforge.net/xapi/xapi-draft.html

[18] “XML Path Language (XPath) Version 1.0”, W3C
Recommendation 16 November 1999. Available online
at http://www.w3.org/TR/xpath

[19] “XUpdate” working draft September 2000, available

online at http://xmldb-
org.sourceforge.net/xupdate/xupdate-wd.html

[20] “JSR-000101 Java API for XML-Based RPC
Specification 1.1.”, Available online at
http://java.sun.com/xml/jaxrpc/index.jsp

[21] ITU-T Rec. X.509|ISO/IEC 9594-8, The Directory:
Authentication Framework, 2000.

[22] “OASIS Web Services Security 1.0 (WS-Security
2004)“, Organization for the Advancement of Structured
Information Standards. Available online at
http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wss

[23] “The TLS Protocol Version 1.0”, IETF RFC2246.
Available online at http://www.ietf.org/rfc/rfc2246.txt.

[24] Computational Services for Academic Research website.
http://www.csar.cfs.ac.uk

[25] The UK National Grid Service website.
http://www.ngs.ac.uk

